|
Оценка спектра дискретных последовательностей в некорректных задачах на основании исследования численного ранга траекторной матрицы
В. С. Кедрин Иркутский государственный университет
Аннотация:
Рассмотрены свойства сингулярного разложения (SVD-разложения) в рамках анализа численного ранга в некорректных задачах для определения частотных свойств дискретных последовательностей, состоящих из совокупности тригонометрических биномов. Указаны свойства определения численного ранга сингулярного разложения. Предложен алгоритм определения частот тригонометрических биномов, входящих в исходную функцию, образующую дискретную последовательность, на основании оценки численного ранга. Определен устойчивый критерий оценки численного ранга на базе средней арифметической оценки псевдо-нуль-пространства траекторной матрицы. Проведен численный эксперимент, показывающий состоятельность средней арифметической оценки псевдо-нуль-пространства в условиях анализа спектра зашумленных последовательностей.
Ключевые слова:
сингулярное разложение, спектральный анализ, численный ранг, некорретная задача, анализ частотных компонент.
Образец цитирования:
В. С. Кедрин, “Оценка спектра дискретных последовательностей в некорректных задачах на основании исследования численного ранга траекторной матрицы”, Дифференциальные уравнения и оптимальное управление, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 183, ВИНИТИ РАН, М., 2020, 73–84
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/into687 https://www.mathnet.ru/rus/into/v183/p73
|
Статистика просмотров: |
Страница аннотации: | 120 | PDF полного текста: | 89 | Список литературы: | 30 |
|