Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры, 2023, том 227, страницы 79–91
DOI: https://doi.org/10.36535/0233-6723-2023-227-79-91
(Mi into1219)
 

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Полнота экспоненциальных систем в пространствах функций в терминах периметра

Б. Н. Хабибуллинa, Е. Г. Кудашеваb, Р. Р. Мурясовc

a Институт математики с вычислительным центром Уфимского федерального исследовательского центра РАН, г. Уфа
b Башкирский государственный педагогический университет им. М. Акмуллы, г. Уфа
c Уфимский университет науки и технологий
Список литературы:
Аннотация: Установлена новая шкала условий полноты экспоненциальных систем в двух видах функциональных пространств на подмножествах комплексной плоскости. Первый — банаховы пространства функций, непрерывных на компакте и одновременно голоморфных во внутренности этого компакта, если она непуста, с равномерной нормой. Второй — пространства голоморфных функций на ограниченном открытом множестве с топологией равномерной сходимости на компактах. Эти условия сформулированы в терминах мажорирования периметра выпуклой оболочки области определения функций из пространства новыми характеристиками распределения показателей экспоненциальной системы.
Ключевые слова: полнота систем функций, экспоненциальная система, целая функция экспоненциального типа, распределение корней, периметр, выпуклая оболочка, опорная функция
Финансовая поддержка Номер гранта
Министерство науки и высшего образования Российской Федерации FMRS-2022-0124
Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (код научной темы FMRS-2022-0124)
Тип публикации: Статья
УДК: 517.5, 514.17
Образец цитирования: Б. Н. Хабибуллин, Е. Г. Кудашева, Р. Р. Мурясов, “Полнота экспоненциальных систем в пространствах функций в терминах периметра”, Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 1, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 227, ВИНИТИ РАН, М., 2023, 79–91
Цитирование в формате AMSBIB
\RBibitem{KhaKudMur23}
\by Б.~Н.~Хабибуллин, Е.~Г.~Кудашева, Р.~Р.~Мурясов
\paper Полнота экспоненциальных систем в пространствах функций в терминах периметра
\inbook Материалы Воронежской международной зимней математической школы «Современные методы теории функций и смежные проблемы», Воронеж, 27 января — 1 февраля 2023 г. Часть 1
\serial Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз.
\yr 2023
\vol 227
\pages 79--91
\publ ВИНИТИ РАН
\publaddr М.
\mathnet{http://mi.mathnet.ru/into1219}
\crossref{https://doi.org/10.36535/0233-6723-2023-227-79-91}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/into1219
  • https://www.mathnet.ru/rus/into/v227/p79
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры
    Статистика просмотров:
    Страница аннотации:61
    PDF полного текста:32
    Список литературы:18
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024