|
Стабилизация стационарных движений спутника около центра масс в геомагнитном поле. II
В. М. Морозов, В. И. Каленова, М. Г. Рак Московский государственный университет имени М. В. Ломоносова
Аннотация:
Рассматриваются задачи стабилизации стационарных движений (положений равновесия и регулярных прецессий) спутника около центра масс в гравитационном и магнитном полях в предположении, что центр масс движется по круговой орбите. Математическими моделями рассматриваемых задач являются системы дифференциальных уравнений с периодическими коэффициентами. Представлен строгий аналитический подход к изучению этой проблемы, который позволяет эффективно и корректно строить алгоритмы стабилизации. Метод основан на приводимости нестационарных систем, описывающих указанные задачи, к стационарным системам. Предложены решения ряда задач стабилизации стационарных движений спутника при помощи магнитных систем. Представлены результаты математического моделирования предложенных алгоритмов, подтверждающие эффективность разработанной методики. Настоящая статья является второй частью работы. Первая часть: Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. — 2023. — 220. — С. 71–85.
Ключевые слова:
линейная нестационарная система, приводимость, стационарные движения, линеаризованные уравнения движений спутника, стабилизация, управляемость, алгоримы управления.
Образец цитирования:
В. М. Морозов, В. И. Каленова, М. Г. Рак, “Стабилизация стационарных движений спутника около центра масс в геомагнитном поле. II”, Материалы Международной конференции «Классическая и современная геометрия», посвященной 100-летию со дня рождения профессора Левона Сергеевича Атанасяна (15 июля 1921 г.—5 июля 1998 г.). Москва, 1–4 ноября 2021 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 221, ВИНИТИ РАН, М., 2023, 71–92
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/into1131 https://www.mathnet.ru/rus/into/v221/p71
|
Статистика просмотров: |
Страница аннотации: | 52 | PDF полного текста: | 24 | Список литературы: | 12 |
|