Аннотация:
For a polynomial $f(x)\in \mathbb Z[x]$ we study an analogue of Jacobsthal function defined by
$j_f(N) =\max_{m}\{$for some $x \in \mathbb N$ the inequality $(x+f(i),N)>1$ holds for all $i\leqslant m\}$.
We prove the lower bound
$$
j_f(P(y))\gg y(\ln y)^{\ell_f-1}\biggl(\frac{(\ln\ln y)^2}{\ln\ln\ln y}\biggr)^{h_f}\biggl(\frac{\ln y\ln\ln\ln y}{(\ln\ln y)^2}\biggr)^{M(f)},
$$
where $P(y)$ is the product of all primes $p$ below $y$, $\ell_f$ is the number of distinct linear factors of $f(x)$, $h_f$ is the number of distinct non-linear irreducible factors and $M(f)$ is the average size of the maximal preimage of a point under a map $f\colon \mathbb F_p\to \mathbb F_p$. The quantity $M(f)$ is computed in terms of certain Galois groups.
This work was performed at the Steklov International Mathematical Center and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-265). The first author was supported by the basic research program of the National Research University Higher School of Economics.
Поступило в редакцию: 09.02.2023 Исправленный вариант: 12.06.2023
Образец цитирования:
A. B. Kalmynin, S. V. Konyagin, “A polynomial analogue of Jacobsthal function”, Изв. РАН. Сер. матем., 88:2 (2024), 33–43; Izv. Math., 88:2 (2024), 225–235