Аннотация:
Пусть $\mathrm Z$ и $\mathrm W$ – распределения точек на комплексной плоскости $\mathbb C$. Следующая задача восходит к исследованиям Ф. Карлсона, Т. Карлемана, Л. Шварца, А. Ф. Леонтьева, Б. Я. Левина, Ж.-П. Кахана и др. При каких $\mathrm Z$ и $\mathrm W$ для целой функции $g\neq 0$ экспоненциального типа, обращающейся в нуль на $\mathrm W$, найдется целая функция $f\neq 0$ экспоненциального типа, обращающаяся в нуль на $\mathrm Z$, для которой $|f|\leqslant |g|$ на мнимой оси? Классическая теорема Мальявена–Рубела начала 1960-х гг. полностью решает эту задачу для “положительных” $\mathrm Z$ и $\mathrm W$, лежащих только на положительной полуоси. Ряд обобщений этого критерия был установлен нами в конце 1980-х гг. для “комплексных” $\mathrm Z \subset \mathbb C$ и $\mathrm W\subset \mathbb C$, отделенных углами от мнимой оси, с некоторыми продвижениями в 2020-е гг. В настоящей статье решаются более жесткие задачи в обобщающем субгармоническом обрамлении для распределений масс на $\mathbb C$. Все предшествующие упоминавшиеся результаты могут быть получены из основных результатов статьи в гораздо более сильной форме даже для исходной постановки с распределениями точек $\mathrm Z$ и $\mathrm W$ и целыми функциями $f$ и $g$ экспоненциального типа. Часть результатов статьи тесно связана со знаменитыми теоремами Бёрлинга–Мальявена о мультипликаторе и радиусе полноты.
Библиография: 67 наименований.
Ключевые слова:целая функция экспоненциального типа, распределение корней, субгармоническая функция конечного типа, распределение масс Рисса, выметание.
Образец цитирования:
Б. Н. Хабибуллин, “Распределения корней и масс целых и субгармонических функций с ограничениями на их рост вдоль полосы”, Изв. РАН. Сер. матем., 88:1 (2024), 141–202; Izv. Math., 88:1 (2024), 133–193