|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Asymptotic bounds for spherical codes
Yu. I. Manina, M. Marcollib a Max–Planck–Institute für Mathematik, Bonn, Germany
b California Institute of Technology, Pasadena, USA
Аннотация:
The set of all error-correcting codes $C$ over a fixed finite alphabet
$\mathbf{F}$ of cardinality $q$ determines the set of code points in the unit square $[0,1]^2$ with coordinates $(R(C), \delta (C))$:= (relative transmission rate, relative minimal distance). The central problem
of the theory of such codes consists in maximising simultaneously the transmission rate of the code and the relative minimum Hamming distance between two different code words. The classical approach to this problem explored in vast literature consists in inventing explicit constructions of “good codes” and comparing new classes of codes with earlier ones.
Less classical approach studies the geometry of the whole set of code points $(R,\delta)$ (with $q$ fixed), at first independently of its computability properties, and only afterwards turning to the problems of computability, analogies with statistical physics etc.
The main purpose of this article consists in extending this latter strategy to the domain of spherical codes.
Bibliography: 14 titles.
Ключевые слова:
error-correcting codes, asymptotic bounds, spherical codes, sphere packings.
Поступило в редакцию: 27.11.2017
Образец цитирования:
Yu. I. Manin, M. Marcolli, “Asymptotic bounds for spherical codes”, Изв. РАН. Сер. матем., 83:3 (2019), 133–157; Izv. Math., 83:3 (2019), 540–564
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/im8739https://doi.org/10.4213/im8739 https://www.mathnet.ru/rus/im/v83/i3/p133
|
Статистика просмотров: |
Страница аннотации: | 439 | PDF русской версии: | 45 | PDF английской версии: | 32 | Список литературы: | 48 | Первая страница: | 30 |
|