Известия Российской академии наук. Серия математическая
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. РАН. Сер. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия Российской академии наук. Серия математическая, 2016, том 80, выпуск 2, страницы 16–32
DOI: https://doi.org/10.4213/im8384
(Mi im8384)
 

Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)

Бесконечные детерминантные меры и эргодическое разложение бесконечных мер Пикрелла. II. Сходимость бесконечных детерминантных мер

А. И. Буфетовabcd

a Математический институт им. В.А. Стеклова Российской академии наук, г. Москва
b Национальный исследовательский университет "Высшая школа экономики", г. Москва
c Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, г. Москва
d Aix-Marseille Université, France
Список литературы:
Аннотация: Вторая часть настоящей работы посвящена сходимости последовательностей бесконечных детерминантных мер, понимаемой как сходимость последовательностей отвечающих им конечных детерминантных мер. Кроме слабой топологии в пространстве вероятностных мер на пространстве конфигураций рассматривается также естественное почти наверно (по бесконечному бесселеву процессу) определенное погружение пространства конфигураций в пространство конечных мер на полупрямой и отвечающая ей слабая топология в пространстве конечных мер на пространстве конечных мер на полупрямой. Главные результаты второй части – достаточные условия плотности семейств и сходимости последовательностей индуцированных детерминантных процессов, а также сходимости процессов, отвечающих конечномерным возмущениям операторов.
Библиография: 25 наименований.
Ключевые слова: детерминантные процессы, бесконечные детерминантные меры, эргодическое разложение, бесконечномерный гармонический анализ, бесконечная унитарная группа, скейлинговые пределы, полиномы Якоби, орбитальный интеграл Хариш-Чандры–Ицыксона–Зюбера.
Финансовая поддержка Номер гранта
European Research Council 647133
Министерство образования и науки Российской Федерации
Работа была поддержана Европейским исследовательским советом (European Research Council) в рамках программы по исследованиям и инновациям “Горизонт 2020/Horizon 2020” (грантовое соглашение 647133 ICHAOS). Она также была поддержана субсидией на государственную поддержку ведущих университетов Российской Федерации в целях повышения их конкурентоспособности среди ведущих мировых научно-образовательных центров, выделенной НИУ “ВШЭ”.
Поступило в редакцию: 07.04.2015
Исправленный вариант: 16.10.2015
Англоязычная версия:
Izvestiya: Mathematics, 2016, Volume 80, Issue 2, Pages 299–315
DOI: https://doi.org/10.1070/IM8384
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.938+519.21
Образец цитирования: А. И. Буфетов, “Бесконечные детерминантные меры и эргодическое разложение бесконечных мер Пикрелла. II. Сходимость бесконечных детерминантных мер”, Изв. РАН. Сер. матем., 80:2 (2016), 16–32; Izv. Math., 80:2 (2016), 299–315
Цитирование в формате AMSBIB
\RBibitem{Buf16}
\by А.~И.~Буфетов
\paper Бесконечные детерминантные меры и эргодическое разложение бесконечных мер Пикрелла. II. Сходимость бесконечных детерминантных мер
\jour Изв. РАН. Сер. матем.
\yr 2016
\vol 80
\issue 2
\pages 16--32
\mathnet{http://mi.mathnet.ru/im8384}
\crossref{https://doi.org/10.4213/im8384}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507376}
\zmath{https://zbmath.org/?q=an:06621170}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..299B}
\elib{https://elibrary.ru/item.asp?id=25707536}
\transl
\jour Izv. Math.
\yr 2016
\vol 80
\issue 2
\pages 299--315
\crossref{https://doi.org/10.1070/IM8384}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000378090300002}
\elib{https://elibrary.ru/item.asp?id=26872251}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977639601}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/im8384
  • https://doi.org/10.4213/im8384
  • https://www.mathnet.ru/rus/im/v80/i2/p16
  • Эта публикация цитируется в следующих 7 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Статистика просмотров:
    Страница аннотации:677
    PDF русской версии:79
    PDF английской версии:18
    Список литературы:90
    Первая страница:29
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024