|
Эта публикация цитируется в 16 научных статьях (всего в 16 статьях)
Ice cream and orbifold Riemann–Roch
A. Buckleya, M. Reidb, S. Zhouc a Department of Mathematics, University of Ljubljana, Slovenia
b Mathematics Institute, University of Warwick, England
c Høgskolen i Telemark, Notodden, Norway
Аннотация:
We give an orbifold Riemann–Roch formula in closed form for the Hilbert series of a quasismooth polarized $n$-fold $(X,D)$, under the assumption that $X$ is projectively Gorenstein with only isolated orbifold points. Our formula is a sum of parts each of which is integral and Gorenstein symmetric of the same canonical weight; the orbifold parts
are called ice cream functions. This form of the Hilbert series is particularly useful for computer algebra, and we illustrate it on examples of $\mathrm{K3}$ surfaces and Calabi–Yau 3-folds.
These results apply also with higher dimensional orbifold strata (see [1] and [2]), although the precise
statements are considerably trickier. We expect to return to this in future publications.
Bibliography: 22 titles.
Ключевые слова:
orbifold, orbifold Riemann–Roch, Dedekind sum, Hilbert series, weighted projective varieties.
Поступило в редакцию: 02.07.2012 Исправленный вариант: 22.08.2012
Образец цитирования:
A. Buckley, M. Reid, S. Zhou, “Ice cream and orbifold Riemann–Roch”, Изв. РАН. Сер. матем., 77:3 (2013), 29–54; Izv. Math., 77:3 (2013), 461–486
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/im8025https://doi.org/10.4213/im8025 https://www.mathnet.ru/rus/im/v77/i3/p29
|
Статистика просмотров: |
Страница аннотации: | 574 | PDF русской версии: | 224 | PDF английской версии: | 14 | Список литературы: | 77 | Первая страница: | 27 |
|