Известия Иркутского государственного университета. Серия «Математика»
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Известия Иркутского государственного университета. Серия Математика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Известия Иркутского государственного университета. Серия «Математика», 2017, том 19, страницы 195–204
DOI: https://doi.org/10.26516/1997-7670.2017.19.195
(Mi iigum298)
 

Оптимизация приближённого метода решения линейных краевых задач интегро-дифференциальных уравнений Вольтерра с функциональными запаздываниями

Г. А. Шишкин

Бурятский государственный университет
Список литературы:
Аннотация: В данной статье исследуется возможность приближённого решения разрешающих уравнений для краевых задач линейных интегродифференциальных уравнений Вольтерра с функциональными запаздываниями. Эти разрешающие уравнения получены с помощью новой формы функции гибкой структуры выведенной с учётом краевых условий и начальных функций. С помощью этой формы было показано, что все линейные краевые задачи интегродифференциальных уравнений Вольтерра запаздывающего типа преобразуются к интегральным уравнениям смешанного типа Вольтерра–Фредгольма с обыкновенным аргументом. К разрешающим уравнениям такого же вида преобразуются и краевые задачи некоторых видов уравнений нейтрального и опережающего типов.
Далее встаёт вопрос решения полученных разрешающих уравнений. Так как в полученные формулы функций и ядер разрешающих интегральных уравнений входят неопределённые вначале решения краевой задачи параметры, то за счёт их оптимального выбора можно пытаться искать точное решение, если же это затруднительно или невозможно, то приближённое решение. Приближённое решение разрешающих интегральных уравнений смешанного типа Вольтерра–Фредгольма с обыкновенным аргументом в работе получено методом последовательных приближений. При его реализации, как и при применении других методов, за счёт оптимального выбора параметров можно сокращать объём выкладок и ускорять процесс сходимости метода. Для приближённых решений разрешающих уравнений получены формулы вычисления погрешности, а используя их и формулы вычисления погрешности первоначально поставленных краевых задач. Рассмотрен и возможный вариант решения в случае, когда за счёт выбора параметров можно сделать все ядра под интегралами с постоянными пределами интегрирования тождественно равными нулю. Приведённый пример подпадает под этот вариант решения. Для такого варианта решения также получены формулы оценки погрешностей разрешающих уравнений и первоначально поставленных краевых задач.
Ключевые слова: краевая задача, интегродифференциальные уравнения Вольтерра, разрешающее уравнение, функция гибкой структуры, приближённое решение.
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.948
MSC: 45D05
Образец цитирования: Г. А. Шишкин, “Оптимизация приближённого метода решения линейных краевых задач интегро-дифференциальных уравнений Вольтерра с функциональными запаздываниями”, Известия Иркутского государственного университета. Серия Математика, 19 (2017), 195–204
Цитирование в формате AMSBIB
\RBibitem{Shi17}
\by Г.~А.~Шишкин
\paper Оптимизация приближённого метода решения линейных краевых задач интегро-дифференциальных уравнений Вольтерра с~функциональными запаздываниями
\jour Известия Иркутского государственного университета. Серия Математика
\yr 2017
\vol 19
\pages 195--204
\mathnet{http://mi.mathnet.ru/iigum298}
\crossref{https://doi.org/10.26516/1997-7670.2017.19.195}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/iigum298
  • https://www.mathnet.ru/rus/iigum/v19/p195
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:241
    PDF полного текста:84
    Список литературы:37
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024