Аннотация:
Предложено представление статистической суммы для макроскопического тела в виде евклидова функционального интеграла, в котором его деформация является классическим параметром, свободным от флуктуаций. Уравнение состояния тела, связывающее его деформацию и температуру с внешней механической нагрузкой, содержится в этом представлении в виде ограничения меры интегрирования соответствующим классическим уравнением движения.
Образец цитирования:
Н. Н. Горобей, А. С. Лукьяненко, “Уравнение состояния и статистическое распределение в макроскопической системе”, Физика твердого тела, 62:12 (2020), 2135–2137; Phys. Solid State, 62:12 (2020), 2400–2402
\RBibitem{GorLuk20}
\by Н.~Н.~Горобей, А.~С.~Лукьяненко
\paper Уравнение состояния и статистическое распределение в макроскопической системе
\jour Физика твердого тела
\yr 2020
\vol 62
\issue 12
\pages 2135--2137
\mathnet{http://mi.mathnet.ru/ftt8230}
\crossref{https://doi.org/10.21883/FTT.2020.12.50295.175}
\elib{https://elibrary.ru/item.asp?id=44821353}
\transl
\jour Phys. Solid State
\yr 2020
\vol 62
\issue 12
\pages 2400--2402
\crossref{https://doi.org/10.1134/S1063783420120100}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ftt8230
https://www.mathnet.ru/rus/ftt/v62/i12/p2135
Эта публикация цитируется в следующих 1 статьяx:
Н. Н. Горобей, А. С. Лукьяненко, “О термодинамических параметрах адиабатически изолированного тела”, Физика твердого тела, 63:5 (2021), 663–665; N. N. Gorobei, A. S. Lukyanenko, “On the thermodynamic parameters of an adiabatically isolated bogy”, Phys. Solid State, 63:5 (2021), 706–708