|
Нечеткие системы и мягкие вычисления, 2016, том 11, выпуск 2, страницы 95–101
(Mi fssc6)
|
|
|
|
Improvement of clustering by modification of degrees of fuzziness
B. Venkataramanaa, L. Padmasreeb, M. Srinivasa Raoc, D. Lathad, G. Ganesane a Holy Mary Institute of Technology, Bogaram, Telangana, India
b VNR Vignana Jyothi Institute of Engineering & Technology, Bachupally, Telangana, India
c Jawaharlal Nehru Technological University, Kukatpally, Telangana, India
d Adikavi Nannaya University, Rajahmundry, Andhra Pradesh, India
e Adikavi Nannaya University, Rajahmundry, Andhra Pradesh, India
Аннотация:
Due to fast growth in technology, conventional classification methods are limited in their ability
to support medical diagnostics without introducing considerable ambiguities. Since the
conditions are vague in medicine the fuzzy methods may be more helpful rather than
crisp ones. Classification depends on number of attributes, number
of clusters to be classified and index of the clustering algorithm. Because it is not
possible to reduce number of attributes and clusters, therefore changing the
index value is a choice to improve performance. The objective of this
paper is to analyze the improvement in terms of number of iterations taken,
algorithm performance and percentage of correctness of Thyroid samples
and wine samples classification by modifying the index of the algorithm.
Ключевые слова:
classification, fuzzy clustering, fuzzy c-means, index.
Поступила в редакцию: 18.11.2016 Исправленный вариант: 05.12.2016
Образец цитирования:
B. Venkataramana, L. Padmasree, M. Srinivasa Rao, D. Latha, G. Ganesan, “Improvement of clustering by modification of degrees of fuzziness”, Нечеткие системы и мягкие вычисления, 11:2 (2016), 95–101
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/fssc6 https://www.mathnet.ru/rus/fssc/v11/i2/p95
|
|