|
Фундаментальная и прикладная математика, 2014, том 19, выпуск 4, страницы 21–91
(Mi fpm1597)
|
|
|
|
Эта публикация цитируется в 30 научных статьях (всего в 30 статьях)
Связность и другие геометрические свойства солнц и чебышёвских множеств
А. Р. Алимов, И. Г. Царьков Московский государственный университет им. М. В. Ломоносова
Аннотация:
В обзоре рассматриваются структурные характеристики “солнц” в линейных нормированных пространствах. Особое внимание уделяется свойствам связности и монотонной линейной связности солнц. Рассматриваются как прямые теоремы геометрической теории приближений, в которых из структурных характеристик множеств выводят их аппроксимативные свойства, так и обратные теоремы, в которых из аппроксимативных свойств множеств получают их структурные характеристики.
Ключевые слова:
солнце, чебышёвское множество, выпуклость, связность, монотонная линейная связность.
Образец цитирования:
А. Р. Алимов, И. Г. Царьков, “Связность и другие геометрические свойства солнц и чебышёвских множеств”, Фундамент. и прикл. матем., 19:4 (2014), 21–91; J. Math. Sci., 217:6 (2016), 683–730
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/fpm1597 https://www.mathnet.ru/rus/fpm/v19/i4/p21
|
Статистика просмотров: |
Страница аннотации: | 686 | PDF полного текста: | 246 | Список литературы: | 57 |
|