Аннотация:
Исследованы закономерности стационарного распространения фронта горения в плавящихся конденсированных смесях. Проанализирован переход режима горения от кинетического при малых размерах исходных частиц к диффузионному при больших размерах частиц. В предельных случаях получены выражения для скорости горения. Приведены оценки границ кинетического и диффузионного режима горения и указан способ экспериментального определения режима горения.
Образец цитирования:
Е. В. Околович, А. Г. Мержанов, Б. И. Хайкин, К. Г. Шкадинский, “Распространение зоны горения в плавящихся конденсированных смесях”, Физика горения и взрыва, 13:3 (1977), 326–335; Combustion, Explosion and Shock Waves, 13:3 (1977), 264–272
\RBibitem{OkoMerKha77}
\by Е.~В.~Околович, А.~Г.~Мержанов, Б.~И.~Хайкин, К.~Г.~Шкадинский
\paper Распространение зоны горения в плавящихся конденсированных смесях
\jour Физика горения и взрыва
\yr 1977
\vol 13
\issue 3
\pages 326--335
\mathnet{http://mi.mathnet.ru/fgv5711}
\transl
\jour Combustion, Explosion and Shock Waves
\yr 1977
\vol 13
\issue 3
\pages 264--272
\crossref{https://doi.org/10.1007/BF00740301}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/fgv5711
https://www.mathnet.ru/rus/fgv/v13/i3/p326
Эта публикация цитируется в следующих 22 статьяx:
Yajun Li, Yuqi Zhang, Jianjun Li, Zichong Zu, Congzhen Wang, Jinfeng Huang, “Combustion characteristics and surface damage mechanism of TC11 titanium alloy under high-speed rubbing”, Materials Today Communications, 2025, 112113
А. Г. Князева, “Двухуровневые модели синтеза композитов: история и возможности”, Физика горения и взрыва, 60:1 (2024), 48–62; A. G. Knyazeva, “Two-level models of composite synthesis: history and potential”, Combustion, Explosion and Shock Waves, 60:1 (2024), 42–55
Б. С. Сеплярский, Р. А. Кочетков, Т. Г. Лисина, “Макрокинетика горения смесей, содержащих титан: влияние структуры смеси и размера частиц титана”, Физика горения и взрыва, 60:3 (2024), 19–31; B. S. Seplyarsky, R. A. Kochetkov, T. G. Lisina, “Combustion macrokinetics of titanium containing mixtures: effect of mixture structure and titanium particle size”, Combustion, Explosion and Shock Waves, 60:3 (2024), 294–305
Ю. А. Чумаков, А. Г. Князева, “Моделирование синтеза композиционных материалов матрица – включения в режиме горения”, Физика горения и взрыва, 57:4 (2021), 93–105; Yu. A. Chumakov, A. G. Knyazeva, “Simulation of synthesis of matrix – inclusion composite materials during combustion”, Combustion, Explosion and Shock Waves, 57:4 (2021), 467–478
A.G. Knyazeva, E.N. Korosteleva, “Brief Review of Kinetic Regularities of TiXCY-Ti Composites Synthesis”, Rev Adv Mater Tech, 2:3 (2020), 1
A. P. Amosov, A. R. Lutz, A. D. Rybakov, E. I. Latukhin, “Application of different powdered forms of carbon for reinforcement of aluminum matrix composite materials by carbon and titanium carbide. А review”, Izv.VUZ. Tsvet. Met., 2020, № 4, 44
A. P. Amosov, A. R. Luts, A. D. Rybakov, E. I. Latukhin, “Using Different Powdered Carbon Forms for Reinforcing Aluminum Composite Materials with Carbon and Titanium Carbide: A Review”, Russ. J. Non-ferrous Metals, 61:5 (2020), 500
Yu. A. Chumakov, HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2019): Proceedings of the XXVI Conference on High-Energy Processes in Condensed Matter, dedicated to the 150th anniversary of the birth of S.A. Chaplygin, 2125, HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2019): Proceedings of the XXVI Conference on High-Energy Processes in Condensed Matter, dedicated to the 150th anniversary of the birth of S.A. Chaplygin, 2019, 030014
Alexander S. Mukasyan, Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, 2017, 148
Christopher E. Shuck, Joshua M. Pauls, Alexander S. Mukasyan, “Ni/Al Energetic Nanocomposites and the Solid Flame Phenomenon”, J. Phys. Chem. C, 120:47 (2016), 27066
Mousheng Song, Maowu Ran, Yu Long, “Synthesis of ultrafine zirconium carbide particles by SHS in an Al–Zr–C system: Microstructural evaluation and formation mode”, Journal of Alloys and Compounds, 564 (2013), 20
M.S. Song, M.W. Ran, Y.Y. Kong, “In situ fabrication of ZrC powder obtained by self-propagating high-temperature synthesis from Al–Zr–C elemental powders”, International Journal of Refractory Metals and Hard Materials, 29:3 (2011), 392
M.X. Zhang, Q.D. Hu, B. Huang, J.Z. Li, J.G. Li, “Study of formation behavior of TiC in the Fe–Ti–C system during combustion synthesis”, International Journal of Refractory Metals and Hard Materials, 29:3 (2011), 356
M.S. Song, B. Huang, M.X. Zhang, J.G. Li, “Study of formation behavior of TiC ceramic obtained by self-propagating high-temperature synthesis from Al–Ti–C elemental powders”, International Journal of Refractory Metals and Hard Materials, 27:3 (2009), 584
M.S. Song, B. Huang, M.X. Zhang, J.G. Li, “In situ synthesis of ZrC particles and its formation mechanism by self-propagating reaction from Al–Zr–C elemental powders”, Powder Technology, 191:1-2 (2009), 34
A.S. Mukasyan, A.S. Rogachev, “Discrete reaction waves: Gasless combustion of solid powder mixtures”, Progress in Energy and Combustion Science, 34:3 (2008), 377
Mousheng Song, Bin Huang, Mengxian Zhang, Jianguo Li, “Reaction Synthesis of Nano-scale ZrC Particulates by Self-propagating High-temperature Synthesis from Al–Zr–C Powder Mixtures”, ISIJ Int., 48:7 (2008), 1026
Arvind Varma, Alexander S. Rogachev, Alexander S. Mukasyan, Stephen Hwang, Advances in Chemical Engineering, 24, 1998, 79
S. Hwang, A. S. Mukasyan, A. S. Rogachev, A. Varma, “Combustion Wave Microstructure in Gas-Solid Reaction Systems:Experiments and Theory”, Combustion Science and Technology, 123:1-6 (1997), 165
H. J. Feng, J. J. Moore, “In situ combustion synthesis of dense ceramic and ceramic-metal interpenetrating phase composites”, Metall Mater Trans B, 26:2 (1995), 265