Функциональный анализ и его приложения
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Функц. анализ и его прил.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Функциональный анализ и его приложения, 2018, том 52, выпуск 1, страницы 80–84
DOI: https://doi.org/10.4213/faa3491
(Mi faa3491)
 

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

Краткие сообщения

Существенный спектр операторов Шрёдингера на периодических графах

В. С. Рабинович

Instituto Politecnico Nacional, ESIME Zacatenco, Mexico
Список литературы:
Аннотация: Пусть $\Gamma$ — метрический граф, вложенный в $\mathbb{R}^{n}$ и периодический относительно группы $\mathbb{G}$, изоморфной $\mathbb{Z}^{m}$, где $1\le m\le n$. Дается описание существенного спектра неограниченных операторов $\mathcal{H}_{q}$, действующих в $L^{2}(\Gamma)$, порожденных операторами Шрёдингера $-d^{2}/dx^{2}+q(x)$ на ребрах и общими граничными условиями в вершинах. Мы вводим множество предельных операторов для $\mathcal{H}_{q}$, таких что существенный спектр $\mathcal{H}_{q}$ есть объединение спектров предельных операторов. Дается приложение этого результата к описанию существенного спектра операторов $\mathcal{H}_{q}$ с периодическими потенциалами, возмущенными медленно осциллирующими на бесконечности слагаемыми.
Ключевые слова: периодические графы, операторы Шрёдингера на графах, предельные операторы, существенный cпектр.
Поступило в редакцию: 13.01.2017
Англоязычная версия:
Functional Analysis and Its Applications, 2018, Volume 52, Issue 1, Pages 66–69
DOI: https://doi.org/10.1007/s10688-018-0210-y
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.95
Образец цитирования: В. С. Рабинович, “Существенный спектр операторов Шрёдингера на периодических графах”, Функц. анализ и его прил., 52:1 (2018), 80–84; Funct. Anal. Appl., 52:1 (2018), 66–69
Цитирование в формате AMSBIB
\RBibitem{Rab18}
\by В.~С.~Рабинович
\paper Существенный спектр операторов Шрёдингера на периодических графах
\jour Функц. анализ и его прил.
\yr 2018
\vol 52
\issue 1
\pages 80--84
\mathnet{http://mi.mathnet.ru/faa3491}
\crossref{https://doi.org/10.4213/faa3491}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3762291}
\elib{https://elibrary.ru/item.asp?id=32428047}
\transl
\jour Funct. Anal. Appl.
\yr 2018
\vol 52
\issue 1
\pages 66--69
\crossref{https://doi.org/10.1007/s10688-018-0210-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000428558200010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044715921}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/faa3491
  • https://doi.org/10.4213/faa3491
  • https://www.mathnet.ru/rus/faa/v52/i1/p80
  • Эта публикация цитируется в следующих 2 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Статистика просмотров:
    Страница аннотации:462
    PDF полного текста:37
    Список литературы:63
    Первая страница:30
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024