|
Time optimal control problem with integral constraint for the heat transfer process
Sh. A. Alimova, G. I. Ibragimovbc a Department of Mathematics,
National University of Uzbekistan,
100174 Tashkent, Uzbekistan
b Institute of Mathematics,
Uzbekistan Academy of Science,
Student town,
100174 Tashkent, Uzbekistan
c Tashkent State University of Economics,
49 Islom Karimov St,
100066, Tashkent, Uzbekistan
Аннотация:
In the present paper a mathematical model of thermocontrol processes is studied. Several convectors are installed on the disjoint subsets Γk of the wall ∂Ω of a volume Ω and each convector produces a hot or cold flow with magnitude equal to μk(t), which are control functions, and on the surface ∂Ω∖Γ, Γ=⋃Γk, a heat exchange occurs by the Newton law. The control functions μk(t) are subjected to an integral constraint. The problem is to find control functions to transfer the state of the process to a given state. A necessary and sufficient condition is found for solvability of this problem. An equation for the optimal transfer time is found, and an optimal control function is constructed explicitly.
Ключевые слова и фразы:
heat transfer process, control function, integral constraint, optimal control, optimal time.
Поступила в редакцию: 24.11.2022
Образец цитирования:
Sh. A. Alimov, G. I. Ibragimov, “Time optimal control problem with integral constraint for the heat transfer process”, Eurasian Math. J., 15:1 (2024), 8–22
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj488 https://www.mathnet.ru/rus/emj/v15/i1/p8
|
Статистика просмотров: |
Страница аннотации: | 144 | PDF полного текста: | 69 | Список литературы: | 20 |
|