|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
A note on Campanato's $L^p$-regularity with continuous coefficients
C. Bernardinia, V. Vesprib, M. Zaccaronc a Department of Mathematics ‘Tullio Levi-Civita’,
University of Padova,
Via Trieste 63,
35121 Padova, Italy
b Department of Mathematics and Informatics ‘Ulisse Dini’,
University of Firenze, Viale Morgagni 67/a, 50134 Firenze, Italy
c EPFL, SB MATH SCI-SB-JS, Station 8, CH-1015 Lausanne, Switzerland
Аннотация:
In this note we consider local weak solutions of elliptic equations in variational form with data in $L^p$. We refine the classical approach due to Campanato and Stampacchia and we prove the $L^p$-regularity for the solutions assuming the coefficients merely continuous. This result shows that it is possible to prove the same sharp $L^p$-regularity results that can be proved using classical singular kernel approach also with the variational regularity approach introduced by De Giorgi. This method works for general operators: parabolic, in nonvariational form, of order $2m$.
Ключевые слова и фразы:
regularity, elliptic systems, continuous coefficients.
Поступила в редакцию: 30.03.2022
Образец цитирования:
C. Bernardini, V. Vespri, M. Zaccaron, “A note on Campanato's $L^p$-regularity with continuous coefficients”, Eurasian Math. J., 13:4 (2022), 44–53
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj452 https://www.mathnet.ru/rus/emj/v13/i4/p44
|
Статистика просмотров: |
Страница аннотации: | 86 | PDF полного текста: | 69 | Список литературы: | 12 |
|