|
Zeros of lacunary type polynomials
S. Das Department of Mathematics,
Kurseong College,
Dow Hill Road, Kurseong,
734203 West Bengal, India
Аннотация:
Using Schwarz's lemma, Mohammad (1965) proved that all zeros of the polynomial
$$
f(z)=a_0+a_1z+\dots+a_{n-1}z^{n-1}+a_nz^n
$$
with real or complex coefficients lie in the closed disc
$$
|z|\leqslant\frac{M'}{|a_n|}\text{ if } |a_n|\leqslant M',
$$
where
$$
M'=\max_{|z|=1}|a_0+a_1z+\dots+a_{n-1}z^{n-1}|.
$$
In this paper, we present new results on the location of zeros of the lacunary type polynomial
$$
p(z)=a_0+a_1z+\dots+a_pz^p+a_nz^n,\quad p<n.
$$
In particular, for $p = n -1$, our first result implies an important corollary which sharpens the above
result. Also, we described some regions in which all zeros of $p(z)$ are simple. In many cases, our
results give better bounds for the location of polynomial zeros than the known ones.
Ключевые слова и фразы:
zeros, lacunary polynomials, annular region.
Поступила в редакцию: 04.08.2020 Исправленный вариант: 07.06.2021
Образец цитирования:
S. Das, “Zeros of lacunary type polynomials”, Eurasian Math. J., 13:1 (2022), 32–43
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj430 https://www.mathnet.ru/rus/emj/v13/i1/p32
|
Статистика просмотров: |
Страница аннотации: | 167 | PDF полного текста: | 66 | Список литературы: | 22 |
|