|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
$\eta$-Invariant and index for operators on the real line periodic at infinity
A. Yu. Savinab, K. N. Zhuikova a S. M. Nikol'skii Mathematical Institute,
Peoples' Friendship University of Russia (RUDN University),
6 Miklukho Maklaya St,
117198 Moscow, Russian Federation
b Institut für Analysis,
Leibniz Universität Hannover,
Welfengarten 1,
D-30167 Hannover, Germany
Аннотация:
We define $\eta$-invariants for periodic pseudodifferential operators on the real line and establish their main properties. In particular, it is proved that the $\eta$-invariant satisfies logarithmic property and a formula for the derivative of the $\eta$-invariant of an operator family with respect to the parameter is obtained. Furthermore, we establish an index formula for elliptic pseudodifferential operators on the real line periodic at infinity. The contribution of infinity to the index formula is given by the constructed $\eta$-invariant. Finally, we compute $\eta$-invariants of differential operators in terms of the spectrum of their monodromy matrices.
Ключевые слова и фразы:
elliptic operator, operator with periodic coefficients, $\eta$-invariant, index.
Поступила в редакцию: 31.07.2021
Образец цитирования:
A. Yu. Savin, K. N. Zhuikov, “$\eta$-Invariant and index for operators on the real line periodic at infinity”, Eurasian Math. J., 12:3 (2021), 57–77
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj415 https://www.mathnet.ru/rus/emj/v12/i3/p57
|
|