|
Nonexistence of nontrivial weak solutions of some nonlinear inequalities with integer power of the Laplacian
W. E. Admasua, E. I. Galakhova, O. A. Salievab a S.M. Nikol'skii Mathematical Institute,
Peoples Friendship University of Russia (RUDN University),
6 Miklukho-Maklay St,
117198, Moscow, Russia
b Department of Applied Mathematics,
MGTU Stankin,
1 Vadkovsky Lane,
125994, Moscow, Russia
Аннотация:
In this paper, we make modification of the results obtained by Mitidieri and Pokhozhaev on sufficient conditions for the nonexistence of nontrivial weak solutions of nonlinear inequalities and systems with integer power of the Laplacian with the nonlinearity term of the form $a(x)|\Delta^m u|^q+b(x)|u|^s$. We obtain an optimal a priori estimate by employing the nonlinear capacity method under a special choice of test functions. Finally, we prove the nonexistence of nontrivial weak solutions of the considered inequalities and systems by contradiction.
Ключевые слова и фразы:
a priori estimates, nonlinear capacity, nonexistence of nontrivial weak solutions.
Поступила в редакцию: 07.05.2020
Образец цитирования:
W. E. Admasu, E. I. Galakhov, O. A. Salieva, “Nonexistence of nontrivial weak solutions of some nonlinear inequalities with integer power of the Laplacian”, Eurasian Math. J., 12:3 (2021), 9–18
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj410 https://www.mathnet.ru/rus/emj/v12/i3/p9
|
Статистика просмотров: |
Страница аннотации: | 131 | PDF полного текста: | 64 | Список литературы: | 25 |
|