Eurasian Mathematical Journal
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Eurasian Math. J.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Eurasian Mathematical Journal, 2020, том 11, номер 1, страницы 72–85
DOI: https://doi.org/10.32523/2077-9879-2020-11-1-72-85
(Mi emj357)
 

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

Stabilization of solutions of two-dimensional parabolic equations and related spectral problems

M. Jenaliyeva, K. Imanberdiyevab, A. Kassymbekovaab, K. Sharipovc

a Department of Differential Equations, Institute of Mathematics and Mathematical Modeling, 125 Pushkin St, 050010 Almaty, Kazakhstan
b Department of Differential Equations and Control Theory, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty, Kazakhstan
c Department of Humanities and Natural Sciences, Kazakh University of the Communication Ways, 32-A Jetysu-1, 050063 Almaty, Kazakhstan
Список литературы:
Аннотация: One of the important properties that characterize the behaviour of solutions of boundary value problems for differential equations is stabilization, which has a direct relationship with the problems of controllability. In this paper, the problems of solvability are investigated for stabilization problems of two-dimensional loaded equations of parabolic type with the help of feedback control given on the boundary of the region. These equations have numerous applications in the study of inverse problems for differential equations.
The problem consists in the choice of boundary conditions (controls), so that the solution of the boundary value problem tends to a given stationary solution at a certain speed at $t\to\infty$. This requires that the control is feedback, i.e. that it responds to unintended fluctuations in the system, suppressing the results of their impact on the stabilized solution. The spectral properties of the loaded two-dimensional Laplace operator, which are used to solve the initial stabilization problem, are also studied. The paper presents an algorithm for solving the stabilization problem, which consists of constructively implemented stages.
The idea of reducing the stabilization problem for a parabolic equation by means of boundary controls to the solution of an auxiliary boundary value problem in the extended domain of independent variables belongs to A.V. Fursikov. At the same time, recently, the so-called loaded differential equations are actively used in problems of mathematical modeling and control of nonlocal dynamical systems.
Ключевые слова и фразы: boundary stabilization, heat equation, spectrum, loaded Laplace operator.
Финансовая поддержка Номер гранта
Министерство образования и науки Республики Казахстан AP05130928
This research is financially supported by a grant from the Ministry of Science and Education of the Republic of Kazakhstan (Grant No. AP05130928).
Поступила в редакцию: 28.06.2019
Реферативные базы данных:
Тип публикации: Статья
MSC: 35K05, 39B82, 47A75
Язык публикации: английский
Образец цитирования: M. Jenaliyev, K. Imanberdiyev, A. Kassymbekova, K. Sharipov, “Stabilization of solutions of two-dimensional parabolic equations and related spectral problems”, Eurasian Math. J., 11:1 (2020), 72–85
Цитирование в формате AMSBIB
\RBibitem{JenImaKas20}
\by M.~Jenaliyev, K.~Imanberdiyev, A.~Kassymbekova, K.~Sharipov
\paper Stabilization of solutions of two-dimensional parabolic equations and related spectral problems
\jour Eurasian Math. J.
\yr 2020
\vol 11
\issue 1
\pages 72--85
\mathnet{http://mi.mathnet.ru/emj357}
\crossref{https://doi.org/10.32523/2077-9879-2020-11-1-72-85}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556972800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087791714}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/emj357
  • https://www.mathnet.ru/rus/emj/v11/i1/p72
  • Эта публикация цитируется в следующих 3 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Статистика просмотров:
    Страница аннотации:217
    PDF полного текста:71
    Список литературы:26
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024