|
Short communications
On smooth solutions of a class of almost hypoelliptic equations of constant strength
H. G. Ghazaryanab, V. N. Margaryana a Department of Appllied Mathematics and Mathematical Information,
Russian-Armenian University,
123 Ovsep Emin St,
0051 Yerevan, Armenia
b Institute of Mathematics,
National Academy of Sciences of Armenia,
0051 Yerevan, Armenia
Аннотация:
In this paper we state a new theorem about smoothness of solutions of almost hypoelliptic and hypoelliptic by Burenkov equation $P(x',D)u=0$, where the coefficients of the linear differential operator $P(x, D) = P(x_1,\dots, x_n, D_1,\dots, D_n)$ of uniformly constant strength depend only on the variables $x' = (x_1,\dots, x_k)$, $k \leqslant n$: if the operator $P(x', D)$ is hypoelliptic by Burenkov and almost hypoelliptic for any $x'\in\mathbb{E}^k$, then all the solutions of the differential equation $P(x', D)u = 0$ belonging to a certain weighted Sobolev class are infinitely differentiable functions.
Ключевые слова и фразы:
hypoelliptic by Burenkov operator, almost hypoelliptic operator, differential operator
of constant strength.
Поступила в редакцию: 30.05.2019
Образец цитирования:
H. G. Ghazaryan, V. N. Margaryan, “On smooth solutions of a class of almost hypoelliptic equations of constant strength”, Eurasian Math. J., 10:4 (2019), 92–95
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj351 https://www.mathnet.ru/rus/emj/v10/i4/p92
|
Статистика просмотров: |
Страница аннотации: | 165 | PDF полного текста: | 41 | Список литературы: | 24 |
|