|
Eurasian Mathematical Journal, 2018, том 9, номер 2, страницы 54–67
(Mi emj297)
|
|
|
|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
On fundamental solutions of a class of weak hyperbolic operators
V. N. Margaryanab, H. G. Ghazaryanab a Institute of Mathematics the National Academy of Sciences of Armenia,
0051 Yerevan, Armenia
b Department of Mathematics and Mathematical Modeling,
Russian-Armenian University,
123 Ovsep Emin St,
0051 Yerevan, Armenia
Аннотация:
We consider a certain class of polyhedrons $\mathfrak{R}\subset\mathbb{E}^n$, multi-anisotropic Jevre spaces $G^{\mathfrak{R}}(\mathbb{E}^n)$, their subspaces $G_0^{\mathfrak{R}}(\mathbb{E}^n)$, consisting of all functions $f\in G^{\mathfrak{R}}(\mathbb{E}^n)$ with compact support, and their duals $(G_0^{\mathfrak{R}}(\mathbb{E}^n))^*$. We introduce the notion of a linear differential operator $P(D)$, $h_{\mathfrak{R}}$-hyperbolic with respect to a vector $N\in\mathbb{E}^n$, where $h_{\mathfrak{R}}$ is a weight function generated by the polyhedron $\mathfrak{R}$. The existence is shown of a fundamental solution $E$ of the operator $P(D)$ belonging to $(G_0^{\mathfrak{R}}(\mathbb{E}^n))^*$ with $\mathrm{supp}\, E\subset\overline{\Omega_N}$, where $\Omega_N:=\{x\in\mathbb{E}^n, (x, N)>0\}$. It is also shown that for any right-hand side $f\in G^{\mathfrak{R}}(\mathbb{E}^n)$ with the support in a cone contained in $\overline{\Omega_N}$ and with the vertex at the origin of $\mathbb{E}^n$, the equation $P(D)u = f$ has a solution belonging to $G^{\mathfrak{R}}(\mathbb{E}^n)$.
Ключевые слова и фразы:
hyperbolic with weight operator (polynomial), multianisotropic Jevre space, Newton polyhedron, fundamental solution.
Поступила в редакцию: 13.03.2017
Образец цитирования:
V. N. Margaryan, H. G. Ghazaryan, “On fundamental solutions of a class of weak hyperbolic operators”, Eurasian Math. J., 9:2 (2018), 54–67
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj297 https://www.mathnet.ru/rus/emj/v9/i2/p54
|
|