|
Eurasian Mathematical Journal, 2018, том 9, номер 1, страницы 40–68
(Mi emj286)
|
|
|
|
Least squares estimator asymptotics for vector autoregressions with deterministic regressors
K. T. Mynbaev International School of Economics,
Kazakh-British Technical University,
Tolebi 59, Room 419,
050035 Almaty, Kazakhstan
Аннотация:
We consider a mixed vector autoregressive model with deterministic exogenous regressors and an autoregressive matrix that has characteristic roots inside the unit circle. The errors are $(2+\epsilon)$-integrable martingale differences with heterogeneous second-order conditional moments. The behavior of the ordinary least squares (OLS) estimator depends on the rate of growth of the exogenous regressors. For bounded or slowly growing regressors we prove asymptotic normality. In case of quickly growing regressors (e.g., polynomial trends) the result is negative: the OLS asymptotics cannot be derived using the conventional scheme and any diagonal normalizer.
Ключевые слова и фразы:
time-series regression, asymptotic distribution, OLS estimator, polynomial trend, deterministic regressor.
Поступила в редакцию: 06.10.2016 Исправленный вариант: 01.02.2017
Образец цитирования:
K. T. Mynbaev, “Least squares estimator asymptotics for vector autoregressions with deterministic regressors”, Eurasian Math. J., 9:1 (2018), 40–68
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj286 https://www.mathnet.ru/rus/emj/v9/i1/p40
|
Статистика просмотров: |
Страница аннотации: | 191 | PDF полного текста: | 101 | Список литературы: | 35 |
|