|
Eurasian Mathematical Journal, 2017, том 8, номер 3, страницы 70–76
(Mi emj267)
|
|
|
|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
On fixed points of contraction maps acting in $(q_1, q_2)$-quasimetric spaces and geometric properties of these spaces
R. Sengupta S.M. Nikol'skii Mathematical Institute,
Department of Nonlinear Analysis and Optimization,
Peoples' Friendship University of Russia (RUDN University),
6 Mikhluko-Maklaya St,
117198 Moscow, Russia
Аннотация:
We study geometric properties of $(q_1, q_2)$-quasimetric spaces and fixed point theorems in these spaces. In paper [1], a fixed point theorem was obtained for a contraction map acting in a complete $(q_1, q_2)$-quasimetric space. The graph of the map was assumed to be closed. In this paper, we show that this assumption is essential, i.e. we provide an example of a complete quasimetric space and a contraction map acting in it whose graph is not closed and which is fixed-point-free. We also describe some geometric properties of such spaces.
Ключевые слова и фразы:
fixed point, quasimetric space.
Поступила в редакцию: 30.04.2017
Образец цитирования:
R. Sengupta, “On fixed points of contraction maps acting in $(q_1, q_2)$-quasimetric spaces and geometric properties of these spaces”, Eurasian Math. J., 8:3 (2017), 70–76
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj267 https://www.mathnet.ru/rus/emj/v8/i3/p70
|
Статистика просмотров: |
Страница аннотации: | 282 | PDF полного текста: | 151 | Список литературы: | 44 |
|