|
Eurasian Mathematical Journal, 2017, том 8, номер 3, страницы 28–35
(Mi emj263)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Existence of the $n$-th root in finite-dimensional power-associative algebras over reals
A. A. Arutyunovab, S. E. Zhukovskiya a S.M. Nikol'skii Mathematical Institute,
Peoples' Friendship University of Russia (RUDN University),
6 Miklukho-Maklaya Street,
117198, Moscow, Russian Federation
b Department of Higher Mathematics,
Moscow Institute of Physics and Technology,
Inststitutskii per., 9,
141700, Dolgoprudny, Moscow region, Russian Federation
Аннотация:
The paper is devoted to the solvability of equations in finite-dimensional power-associative algebras over $\mathbb{R}$. Necessary and sufficient conditions for the existence of the $n$-th root in a power-associative $\mathbb{R}$-algebra are obtained. Sufficient solvability conditions for a specific class of polynomial equations in a power-associative $\mathbb{R}$-algebra are derived.
Ключевые слова и фразы:
real algebra, power-associative algebra, Cayley–Dickson construction.
Поступила в редакцию: 01.04.2017
Образец цитирования:
A. A. Arutyunov, S. E. Zhukovskiy, “Existence of the $n$-th root in finite-dimensional power-associative algebras over reals”, Eurasian Math. J., 8:3 (2017), 28–35
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj263 https://www.mathnet.ru/rus/emj/v8/i3/p28
|
|