|
Eurasian Mathematical Journal, 2017, том 8, номер 2, страницы 47–73
(Mi emj256)
|
|
|
|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
On the boundedness of quasilinear integral operators of iterated type with Oinarov's kernels on the cone of monotone functions
V. D. Stepanovab, G. E. Shambilovac a Steklov Institute of Mathematics,
8 Gubkina St,
119991 Moscow, Russia
b Department of Nonlinear Analysis and Optimization,
RUDN University,
6 Miklukho-Maklay St,
117198 Moscow, Russia
c Department of Mathematics,
Financial University under the Government of the Russian Federation,
49 Leningradsky Prospekt,
125993 Moscow, Russia
Аннотация:
We solve the characterization problem of $L_v^p-L_{\rho}^r$ weighted inequalities on Lebesgue cones of monotone functions on the half-axis for quasilinear integral operators of iterated type with Oinarov's kernels.
Ключевые слова и фразы:
Hardy type inequality, weighted Lebesgue space, quasilinear integral operator, Oinarov's kernel, cone of monotone functions.
Поступила в редакцию: 18.11.2016
Образец цитирования:
V. D. Stepanov, G. E. Shambilova, “On the boundedness of quasilinear integral operators of iterated type with Oinarov's kernels on the cone of monotone functions”, Eurasian Math. J., 8:2 (2017), 47–73
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj256 https://www.mathnet.ru/rus/emj/v8/i2/p47
|
Статистика просмотров: |
Страница аннотации: | 363 | PDF полного текста: | 130 | Список литературы: | 42 |
|