|
Eurasian Mathematical Journal, 2017, том 8, номер 1, страницы 58–66
(Mi emj248)
|
|
|
|
Some new inequalities for the Fourier transform for functions in generalized Lorentz spaces
A. N. Kopezhanovaab a Faculty of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, Satpayev St 2, 010008 Astana, Kazakhstan
b Department of Engineering Sciences and Mathematics,
Lulea University of Technology, SE 97187, Lulea, Sweden
Аннотация:
The classical Hausdorff–Young and Hardy–Littlewood–Stein inequalities, relating functions on $\mathbb{R}$ and their Fourier transforms, are extended and complemented in various ways. In particular, a variant of the Hardy–Littlewood–Stein inequality covering the case $p\geqslant2$ is proved and two-sided estimates are derived.
Ключевые слова и фразы:
Fourier transform, Hausdorff–Young's inequality, generalized Lorentz spaces, weight function, generalized monotone function.
Поступила в редакцию: 25.06.2016
Образец цитирования:
A. N. Kopezhanova, “Some new inequalities for the Fourier transform for functions in generalized Lorentz spaces”, Eurasian Math. J., 8:1 (2017), 58–66
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj248 https://www.mathnet.ru/rus/emj/v8/i1/p58
|
Статистика просмотров: |
Страница аннотации: | 294 | PDF полного текста: | 164 | Список литературы: | 53 |
|