|
Eurasian Mathematical Journal, 2017, том 8, номер 1, страницы 34–49
(Mi emj246)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces
A. Gogatishvilia, R. Mustafayevbc, T. Ünverc a Institute of Mathematics,
Academy of Sciences of the Czech Republic, Žitná 25,
115 67 Praha 1, Czech Republic
b Institute of Mathematics and Mechanics, Academy of Sciences of Azerbaijan, B. Vahabzade St. 9, Baku, AZ 1141, Azerbaijan
c Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey
Аннотация:
In this paper embedding relations between weighted complementary local Morrey-type spaces $^cLM_{p\theta,\omega}(\mathbb{R}^n,v)$ and weighted local Morrey-type spaces $LM_{p\theta,\omega}(\mathbb{R}^n,v)$ are characterized. In particular, two-sided estimates of the optimal constant $c$ in the inequality
$$
\left(
\int_0^\infty\left(
\int_{B(0,t)} f(x)^{p_2}v_2(x)\,dx
\right)^{\frac{q_2}{p_2}}u_2(t)\,dt
\right)^{\frac1{q_2}}
\leqslant c \left(\int_0^\infty\left(\int_{^cB(0,t)}f(x)^{p_1}v_1(x)\,dx\right)^{\frac{q_1}{p_1}}u_1(t)\,dt\right)^{\frac1{q_1}},\quad f\geqslant0
$$
are obtained, where $p_1$, $p_2$, $q_1$, $q_2\in(0,\infty)$, $p_2\leqslant q_2$ and $u_1$, $u_2$ and $v_1$, $v_2$ are weights on $(0,\infty)$ and $\mathbb{R}^n$, respectively. The proof is based on the combination of the duality techniques with
estimates of optimal constants of the embedding relations between weighted local Morrey-type
and complementary local Morrey-type spaces and weighted Lebesgue spaces, which allows to
reduce the problem to using of the known Hardy-type inequalities.
Ключевые слова и фразы:
local Morrey-type spaces, embeddings, iterated Hardy inequalities.
Поступила в редакцию: 06.12.2016
Образец цитирования:
A. Gogatishvili, R. Mustafayev, T. Ünver, “Embedding relations between weighted complementary local Morrey-type spaces and weighted local Morrey-type spaces”, Eurasian Math. J., 8:1 (2017), 34–49
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj246 https://www.mathnet.ru/rus/emj/v8/i1/p34
|
Статистика просмотров: |
Страница аннотации: | 247 | PDF полного текста: | 85 | Список литературы: | 48 |
|