|
Eurasian Mathematical Journal, 2016, том 7, номер 4, страницы 85–91
(Mi emj242)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Short communications
On the solvability of parabolic functional differential equations in Banach spaces
A. M. Selitskiiab a Peoples Friendship Uniersity of Russia (RUDN University),
6 Miklukho-Maklay St, 117198, Moscow, Russia
b Dorodnicyn Computing Center,
Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, 40 Vavilova St, 119333, Moscow, Russia
Аннотация:
In this paper, a parabolic functional differential equation is considered in the spaces $C(0,T;H_p^1(Q))$ for $p$ close to $2$. The transformations of the space argument are supposed to be multiplicators of the Sobolev spaces with a small smoothness exponent. The machinery of the investigation is based on the semigroup theory. In particular, it is proved that the elliptic part of the operator is a generator of a strongly continuous semigroup.
Ключевые слова и фразы:
functional differential equations, Lipschitz domain, Banach spaces.
Поступила в редакцию: 10.06.2016
Образец цитирования:
A. M. Selitskii, “On the solvability of parabolic functional differential equations in Banach spaces”, Eurasian Math. J., 7:4 (2016), 85–91
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj242 https://www.mathnet.ru/rus/emj/v7/i4/p85
|
Статистика просмотров: |
Страница аннотации: | 1643 | PDF полного текста: | 91 | Список литературы: | 43 |
|