|
Eurasian Mathematical Journal, 2016, том 7, номер 4, страницы 9–29
(Mi emj238)
|
|
|
|
Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)
Harmonic analysis of functions periodic at infinity
A. Baskakov, I. Strukova Faculty of Applied Mathematics, Mechanics and Informatics,
Voronezh State University, 1 Universitetskaya Sq, 394036 Voronezh, Russia
Аннотация:
In this paper we introduce the notion of vector-valued functions periodic at infinity. We characterize the sums of the usual periodic functions and functions vanishing at infinity as a subclass of these functions. Our main focus is the development of the basic harmonic analysis for functions periodic at infinity and an analogue of the celebrated Wiener’s Lemma that deals with absolutely convergent Fourier series. We also derive criteria of periodicity at infinity for solutions of difference and differential equations. Some of the results are derived by means of the spectral theory of isometric group representations.
Ключевые слова и фразы:
Banach space, functions slowly varying at infinity, functions periodic at infinity, Wiener's theorem, absolutely convergent Fourier series, invertibility, difference equations.
Поступила в редакцию: 14.03.2016
Образец цитирования:
A. Baskakov, I. Strukova, “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9–29
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj238 https://www.mathnet.ru/rus/emj/v7/i4/p9
|
Статистика просмотров: |
Страница аннотации: | 731 | PDF полного текста: | 327 | Список литературы: | 84 |
|