|
Eurasian Mathematical Journal, 2016, том 7, номер 2, страницы 50–67
(Mi emj223)
|
|
|
|
The composition operator in Sobolev Morrey spaces
N. Kydyrminaa, M. Lanza de Cristoforisb a Institute of Applied Mathematics, 28a Universitetskaya St., 100028 Kazakhstan, Karaganda
b Dipartimento di Matematica, Università degli Studi di Padova, via Trieste 63, 35121 Italy, Padova
Аннотация:
In this paper we prove sufficent conditions on a map $f$ from the real line to itself in order that the composite map $f \circ g$ belongs to a Sobolev Morrey space of real valued functions on a domain of the $n$-dimensional space for all functions $g$ in such a space. Then we prove sufficient conditions on f in order that the composition operator $T_f$ defined by $T_f [g] \equiv f\circ g$ for all functions $g$ in the Sobolev Morrey space is continuous, Lipschitz continuous and differentiable in the Sobolev Morrey space. We confine the attention to Sobolev Morrey spaces of order up to one.
Ключевые слова и фразы:
composition operator, Morrey space, Sobolev Morrey space.
Поступила в редакцию: 21.05.2016
Образец цитирования:
N. Kydyrmina, M. Lanza de Cristoforis, “The composition operator in Sobolev Morrey spaces”, Eurasian Math. J., 7:2 (2016), 50–67
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj223 https://www.mathnet.ru/rus/emj/v7/i2/p50
|
Статистика просмотров: |
Страница аннотации: | 245 | PDF полного текста: | 146 | Список литературы: | 54 |
|