|
Eurasian Mathematical Journal, 2016, том 7, номер 1, страницы 28–49
(Mi emj214)
|
|
|
|
Inequalities between the norms of a function and its derivatives
A. S. Kochurov Department of Mechanics and Mathematics, Moscow State University, Leninskie gory, Moscow 119991, Russia
Аннотация:
The paper is devoted to the problem of finding the maximum of the norm $||x||_q$ with the constraints $||x||_p=\eta$, $||\dot{x}||_r=\sigma$, $x(0)=a$, $a, \sigma, \eta>0$, for functions $x\in L_p(\mathbb{R}_-)$ with derivatives $\dot{x}\in L_r(\mathbb{R_-})$, $0 < p \leqslant q < \infty$, $r > 1$. The arguments employed are based on the standard machinery of the calculus of variations.
Ключевые слова и фразы:
inequalities for derivatives, necessary conditions for an extremum, Weierstrass formula, Euler equation.
Поступила в редакцию: 30.11.2015
Образец цитирования:
A. S. Kochurov, “Inequalities between the norms of a function and its derivatives”, Eurasian Math. J., 7:1 (2016), 28–49
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj214 https://www.mathnet.ru/rus/emj/v7/i1/p28
|
|