|
Eurasian Mathematical Journal, 2015, том 6, номер 4, страницы 77–91
(Mi emj211)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Open neighbourhood colouring of some path related graphs
N. N. Swamya, B. Sooryanarayanab a Department of Mathematics, University College of Science,
Tumkur University, Tumakuru, Karnataka 572103, India
b Department of Mathematical and Computational Studies, Dr. Ambedkar Institute of Technology, Bengaluru, Karnataka 560056, India
Аннотация:
An open neighbourhood $k$-colouring of a simple connected undirected graph $G(V,E)$ is a $k$-colouring $c : V\to \{1,2,\dots,k\}$, such that, for every $w \in V$ and for all $u,v \in N(w)$, $c(u) \ne c(v)$. The minimal value of $k$ for which $G$ admits an open neighbourhood $k$-colouring is called the open neighbourhood chromatic number of $G$ and is denoted by $\chi_{onc} (G)$. In this paper, we obtain the open neighbourhood chromatic number of the line graph and total graph of a path $P_n$. We also obtain the open neighbourhood chromatic number of two families of graphs which are derived from a path $P_n$, namely $k^{th}$ power of a path and transformation graph of a path.
Ключевые слова и фразы:
colouring, chromatic number, open neighbourhood, power graph, transformation graph.
Поступила в редакцию: 08.01.2015
Образец цитирования:
N. N. Swamy, B. Sooryanarayana, “Open neighbourhood colouring of some path related graphs”, Eurasian Math. J., 6:4 (2015), 77–91
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj211 https://www.mathnet.ru/rus/emj/v6/i4/p77
|
|