|
Eurasian Mathematical Journal, 2015, том 6, номер 3, страницы 54–75
(Mi emj202)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Multidimensional variational functionals with subsmooth integrands
I. V. Orlovab, A. V. Tsygankovaa a Department of Mathematics and Informatics, Crimea Federal V. Vernadsky University, 4 Academician Vernadsky Avenue,
Simferopol, Republic of Crimea, Russia, 295007
b Institute of Mathematics, Voronezh State University, 1 University Square, Voronezh, Russia, 394006
Аннотация:
In the present paper, we establish a base of investigation of multidimensional variational functionals having $C^1$-subsmooth or $C^2$-subsmooth integrands. First, an estimate of the first $K$-variation for the multidimensional variational functional having a $C^1$-subsmooth integrand is obtained and numerous partial cases are studied. Secondly, we have obtained $C^1$-subsmooth generalizations of the basic variational lemma and Euler–Ostrogradskii equation. Finally, for the $C^2$-subsmooth case, an estimate of the second $K$-variational is obtained and a series of the partial cases is studied as well.
Ключевые слова и фразы:
compact subdifferential, subsmoothness, multidimensional variational functional, Euler–Ostrogradskii equation, Euler–Ostrogradskii inclusion.
Поступила в редакцию: 31.01.2015
Образец цитирования:
I. V. Orlov, A. V. Tsygankova, “Multidimensional variational functionals with subsmooth integrands”, Eurasian Math. J., 6:3 (2015), 54–75
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj202 https://www.mathnet.ru/rus/emj/v6/i3/p54
|
Статистика просмотров: |
Страница аннотации: | 294 | PDF полного текста: | 78 | Список литературы: | 50 |
|