|
Eurasian Mathematical Journal, 2015, том 6, номер 2, страницы 41–62
(Mi emj193)
|
|
|
|
On estimates of the approximation numbers of the Hardy operator
E. N. Lomakinaab a Department of Higher Mathematics, Far Eastern State Transport University, 47 Seryshev St., Khabarovsk 680021, Russia
b Department of Mathematics and Mathematical Methods in Economics, Khabarovsk State University of Economics and Law,
134 Tikhookeanskaya St., Khabarovsk 680042, Russia
Аннотация:
We obtain two–sided estimates which describe the behaviour of the approximation numbers of the Hardy operator and Schatten–Neumann norms in the new case, when the compact operator
$$
Tf(x)=\int_0^x f(\tau) d\tau, \quad x>0,
$$
is acting from a Lebesgue space to a Lorentz space $(T: L_v^r(R^+)\to L_\omega^{pq}(R^+))$ under the
condition $1<p<r\leqslant q<\infty$.
Ключевые слова и фразы:
Lebesgue space, Lorentz space, Hardy operator, approximation numbers, Schatten–von Neumann norm.
Поступила в редакцию: 14.04.2015
Образец цитирования:
E. N. Lomakina, “On estimates of the approximation numbers of the Hardy operator”, Eurasian Math. J., 6:2 (2015), 41–62
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj193 https://www.mathnet.ru/rus/emj/v6/i2/p41
|
Статистика просмотров: |
Страница аннотации: | 203 | PDF полного текста: | 92 | Список литературы: | 52 |
|