|
Eurasian Mathematical Journal, 2014, том 5, номер 2, страницы 132–138
(Mi emj160)
|
|
|
|
Short communications
On the spectrum of a nonlinear operator associated with calculation of the norm of a linear vector-functional
V. I. Burenkovab, T. V. Tararykovaba a Faculty of Mechanics and Mathematics, L. N. Gumilyov Eurasian National University, 2 Mirzoyan St., 010008 Astana, Kazakhstan
b Cardiff School of Mathematics, Cardiff University, Senghennydd Rd.
CF24 4AG Cardiff, UK
Аннотация:
An explicit formula is presented for the norm if $1\le p\le\infty$ and for the quasi-norm if $0<p<1$ of a linear vector-functional $L\colon H\to l_p$ on a Hilbert space $H$ and the set of all extremal elements is described. All eigenvalues and eigenvectors of a nonlinear homogeneous operator entering the corresponding Euler's equation, are written out explicitly.
Ключевые слова и фразы:
continuous linear vector-functional, Riesz theorem, extremal elements, Euler's equation, nonlinear eigenvalue problem.
Поступила в редакцию: 01.02.2014
Образец цитирования:
V. I. Burenkov, T. V. Tararykova, “On the spectrum of a nonlinear operator associated with calculation of the norm of a linear vector-functional”, Eurasian Math. J., 5:2 (2014), 132–138
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj160 https://www.mathnet.ru/rus/emj/v5/i2/p132
|
|