|
Eurasian Mathematical Journal, 2014, том 5, номер 1, страницы 82–94
(Mi emj150)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
On a certain class of operator algebras and their derivations
Sh. A. Ayupovab, R. Z. Abdullaeva, K. K. Kudaybergenovc a Dormon yoli 29, Institute of Mathematics, National University of Uzbekistan, 100125 Tashkent, Uzbekistan
b Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
c Department of Mathematics, Karakalpak State University, 1 Abdirov St., 142012, Nukus, Uzbekistan
Аннотация:
Given a von Neumann algebra $M$ with a faithful normal finite trace, we introduce the so-called finite tracial algebra $M_f$ as the intersection of $L_p$-spaces $L_p(M,\mu)$ over all $p\geqslant1$ and over all faithful normal finite traces $\mu$ on $M$. Basic algebraic and topological properties of finite tracial algebras are studied. We prove that all derivations on these algebras are inner.
Ключевые слова и фразы:
von Neumann algebra, faithful normal finite trace, non commutative $L_p$-spaces, Arens algebra, finite tracial algebra, derivations.
Поступила в редакцию: 06.04.2011
Образец цитирования:
Sh. A. Ayupov, R. Z. Abdullaev, K. K. Kudaybergenov, “On a certain class of operator algebras and their derivations”, Eurasian Math. J., 5:1 (2014), 82–94
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj150 https://www.mathnet.ru/rus/emj/v5/i1/p82
|
|