Eurasian Mathematical Journal
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Eurasian Math. J.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Eurasian Mathematical Journal, 2014, том 5, номер 1, страницы 7–60 (Mi emj148)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Hölder analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar’kov’s phenomenon. Part I

S. S. Ajiev

School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW, 2522, Australia
Список литературы:
Аннотация: In an explicit quantitative and often precise manner, we construct the homogeneous Hölder homeomorphisms and study the approximation of uniformly continuous mappings by the Hölder–Lipschitz ones between the pairs of abstract and concrete metric and (quasi) Banach spaces including, in particular, Banach lattices, general non-commutative $L_p$-spaces, the classes $IG$ and $IG_+$ of independently generated spaces (for example, non-commutative-valued Bochner–Lebesgue spaces) and anisotropic Sobolev, Nikol’skii–Besov and Lizorkin–Triebel spaces of functions on an open subset or a class of domains of an Euclidean space defined with underlying mixed $L_p$-norms in terms of differences, local approximations by polynomials, wavelet decompositions and systems of closed operators, such as holomorphic functional calculus and Fourier multipliers of smooth Littlewood–Paley decompositions. Our approach also allows to treat both the finite (as in the initial and/or boundary value problems in PDE) and infinite $l_p$-sums of these spaces, their duals and “Bochnerizations”. Many results are automatically extended to the setting of the function spaces with variable smoothness, including the weighted ones. The sharpness of the approximation results, shown for the majority of the pairs under some mild conditions and underpinning the corresponding sharpness of the Hölder continuity exponents of the homogeneous homeomorphisms, indicates that the range of the exponents is often a proper subset of $(0,1]$, that is the presence of Tsar’kov’s phenomenon. We also consider the approximation by the mappings taking the values in the convex envelope of the range of the original approximated mapping. The negative results on the absence of uniform embeddings of the balls of some function spaces, particularly including $BMO$, $VMO$, Nikol’skii–Besov and Lizorkin–Triebel spaces with $q=\infty$ and their $VMO$-like separable subspaces, into any Hilbert space are established. Relying on the solution to the problem of the global Hölder continuity of metric projections and the existence of the Hölder continuous homogeneous right inverses of closed surjective operators and retractions onto closed convex subsets, as well as our results on the bounded extendability of the Hölder–Lipschitz mappings and re-homogenisation technique, we develop and employ our key explicit quantitative tools, such as the global (on arbitrary bounded subsets) Hölder continuity of the duality mapping and Lozanovskii factorisation, the answer to the three-space problem for the Hölder classification of infinite-dimensional spheres, the Hölder continuous counterpart of the Kalton–Pełczyńki decomposition method, the Hölder continuity of the homogeneous homeomorphism induced by the complex interpolation method and such counterparts of the classical Mazur mappings as the abstract and simple Mazur ascent and complex Mazur descent. Important role is also played by the study of the local unconditional structure and other complementability results, as well as the existence of equivalent geometrically friendly norms.
Ключевые слова и фразы: Hölder classification of spheres, Hölder–Lipschitz mappings, approximation of uniformly continuous mappings, Tsar’kov’s phenomenon, Mazur mappings, Lozanovskii factorisation, homogeneous right inverses, metric projection, asymmetric uniform convexity and smoothness, dimension-free estimates, $\lambda$-horn condition, local unconditional structure, Nikol’skii–Besov, Lizorkin–Triebel, Sobolev, non-commutative $L_p$ and $IG$-spaces, Banach lattices, wavelets, three-space problem, Kalton–Pełczyńki decomposition, bounded extension of Hölder mappings, Markov type and cotype, complemented subspaces, UMD.
Поступила в редакцию: 17.03.2011
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: S. S. Ajiev, “Hölder analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar’kov’s phenomenon. Part I”, Eurasian Math. J., 5:1 (2014), 7–60
Цитирование в формате AMSBIB
\RBibitem{Aji14}
\by S.~S.~Ajiev
\paper H\"older analysis and geometry on Banach spaces: homogeneous homeomorphisms and commutative group structures, approximation and Tzar’kov’s phenomenon. Part I
\jour Eurasian Math. J.
\yr 2014
\vol 5
\issue 1
\pages 7--60
\mathnet{http://mi.mathnet.ru/emj148}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/emj148
  • https://www.mathnet.ru/rus/emj/v5/i1/p7
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Статистика просмотров:
    Страница аннотации:262
    PDF полного текста:127
    Список литературы:71
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024