|
Eurasian Mathematical Journal, 2013, том 4, номер 4, страницы 88–100
(Mi emj146)
|
|
|
|
$\Gamma$-convergence of oscillating thin obstacles
Yu. O. Korolevaab, M. H. Strömqvistc a Department of Differential Equations, Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
b Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden
c Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Аннотация:
We consider the minimization problems of obstacle type
$$
\min\left\{\int_\Omega|Du|^2\,dx\colon u\ge\psi_\varepsilon\ \text{on}\ P,\ u=0\ \text{on}\ \partial\Omega\right\},
$$
as $\varepsilon\to0$. Here $\Omega$ is a bounded domain in $\mathbb R^n$, $\psi_\varepsilon$ is a periodic function of period $\varepsilon$, constructed from a fixed function $\psi$, and $P\subset\subset\Omega$ is a subset of the hyper-plane $\{x\in\mathbb R^n\colon x\cdot\eta=0\}$. We assume that $n\ge3$ and that the normal $\eta$ satisfies a generic condition that guarantees certain ergodic properties of the quantity
$$
\#\left\{k\in\mathbb Z^n\colon P\cap\{x\colon|x-\varepsilon k|<\varepsilon^{n/(n-1)}\}\right\}.
$$
Under these hypotheses we compute explicitly the limit functional of the obstacle problem above, which is of the type
$$
H^1_0(\Omega)\owns u\mapsto\int_\Omega|Du|^2\,dx+\int_PG(u)\,d\sigma.
$$
Ключевые слова и фразы:
obstacle problem, homogenization theory, $\Gamma$-convergence.
Поступила в редакцию: 26.07.2013
Образец цитирования:
Yu. O. Koroleva, M. H. Strömqvist, “$\Gamma$-convergence of oscillating thin obstacles”, Eurasian Math. J., 4:4 (2013), 88–100
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj146 https://www.mathnet.ru/rus/emj/v4/i4/p88
|
Статистика просмотров: |
Страница аннотации: | 198 | PDF полного текста: | 97 | Список литературы: | 57 |
|