|
Eurasian Mathematical Journal, 2013, том 4, номер 3, страницы 8–19
(Mi emj129)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
The O'Neil inequality for the Hankel convolution operator and some applications
C. Aykola, V. S. Guliyevbc, A. Serbetcia a Ankara University, Department of Mathematics, 06100 Tandogan, Ankara, Turkey
b Ahi Evran University, Department of Mathematics, 40100, Kirsehir, Turkey
c Institute of Mathematics and Mechanics Academy of Sciences of Azerbaijan, 9, B. Vaxabzade, Baku, Republic of Azerbaijan, AZ1141
Аннотация:
In this paper we prove the O'Neil inequality for the Hankel (Fourier–Bessel) convolution operator and consider some of its applications. By using the O'Neil inequality we study the boundedness of the Riesz–Hankel potential operator $I_{\beta,\alpha}$, associated with the Hankel transform in the Lorentz–Hankel spaces $L_{p,r,\alpha}(0,\infty)$. We establish necessary and sufficient conditions for the boundedness of $I_{\beta,\alpha}$, from the Lorentz–Hankel spaces $L_{p,r,\alpha}(0,\infty)$ to $L_{q,s,\alpha}(0,\infty)$, $1<p<q<\infty$, $\le r\le s\le\infty$. We obtain boundedness conditions in the limiting cases $p=1$ and $p=(2\alpha+2)/\beta$. Finally, for the limiting case $p=(2\alpha+2)/\beta$ we prove an analogue of the Adams theorem on exponential integrability of $I_{\beta,\alpha}$, in $L_{(2\alpha+2)/\beta,r,\alpha}(0,\infty)$.
Ключевые слова и фразы:
Bessel differential operator, Hankel transform, $\alpha$ -rearrangement, Lorentz–Hankel spaces, Riesz–Hankel potential.
Поступила в редакцию: 19.03.2013
Образец цитирования:
C. Aykol, V. S. Guliyev, A. Serbetci, “The O'Neil inequality for the Hankel convolution operator and some applications”, Eurasian Math. J., 4:3 (2013), 8–19
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj129 https://www.mathnet.ru/rus/emj/v4/i3/p8
|
Статистика просмотров: |
Страница аннотации: | 327 | PDF полного текста: | 144 | Список литературы: | 58 |
|