|
Eurasian Mathematical Journal, 2013, том 4, номер 2, страницы 64–81
(Mi emj124)
|
|
|
|
The small parameter method for regular linear differential equations on unbounded domains
G. A. Karapetyan, H. G. Tananyan Department of Applied Mathematics and Informatics, Russian-Armenian (Slavonic) University, Yerevan, Armenia
Аннотация:
Algorithms for the asymptotic expansion of the solution to the Dirichlet problem for a regular equation with a small parameter $\varepsilon$ ($\varepsilon>0$) at higher derivatives on an unbounded domain (the whole space, the half space and a strip), based on the solution to the degenerate (as $\varepsilon\to0$) Dirichlet problem for a regular hypoelliptic equation of the lower order, are described. Estimates for remainder terms of those expansions are obtained.
Ключевые слова и фразы:
regular operator, hypoelliptic operator, boundary layer, regular degeneration, singular perturbation, uniform solvability.
Поступила в редакцию: 23.01.2012
Образец цитирования:
G. A. Karapetyan, H. G. Tananyan, “The small parameter method for regular linear differential equations on unbounded domains”, Eurasian Math. J., 4:2 (2013), 64–81
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj124 https://www.mathnet.ru/rus/emj/v4/i2/p64
|
Статистика просмотров: |
Страница аннотации: | 254 | PDF полного текста: | 115 | Список литературы: | 41 |
|