|
Eurasian Mathematical Journal, 2010, том 1, номер 1, страницы 137–146
(Mi emj11)
|
|
|
|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
Equiconvergence theorems for Sturm–Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm)
I. V. Sadovnichaya Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow, Russia
Аннотация:
We study the Sturm–Liouville operator $Ly=l(y)=-\dfrac{d^2y}{dx^2}+q(x)y$ with Dirichlet boundary conditions $y(0)=y(\pi)=0$ in the space $L_2[0,\pi]$. We assume that the potential has the form $q(x)=u'(x)$, where $u\in W_2^{\theta}[0,\pi]$ with $0<\theta<1/2$. Here $W_2^{\theta}[0,\pi]=[L_2,W_2^1]_\theta$ is the Sobolev space. We consider the problem of equiconvergence in $W_2^\theta[0,\pi]$-norm of two expansions of a function $f\in L_2[0,\pi]$. The first one is constructed using the system of the eigenfunctions and associated functions of the operator $L$. The second one is the Fourier expansion in the series of sines. We show that the equiconvergence holds for any function $f$ in the space $L_2[0,\pi]$.
Ключевые слова и фразы:
equiconvergence, Sturm–Lioville operators, singular potential.
Поступила в редакцию: 14.10.2009
Образец цитирования:
I. V. Sadovnichaya, “Equiconvergence theorems for Sturm–Lioville operators with singular potentials (rate of equiconvergence in $W_2^\theta$-norm)”, Eurasian Math. J., 1:1 (2010), 137–146
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj11 https://www.mathnet.ru/rus/emj/v1/i1/p137
|
|