|
Eurasian Mathematical Journal, 2012, том 3, номер 4, страницы 99–110
(Mi emj107)
|
|
|
|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation
M. S. Salakhitdinov, A. Hasanov Institute of Mathematics, National University of Uzbekistan, Tashkent, Uzbekistan
Аннотация:
In [18], fundamental solutions for the generalized bi-axially symmetric Helmholtz equation were constructed in $R^+_2=\{(x,y)\colon x>0,\ y>0\}$. They contain Kummer's confluent hypergeometric functions in three variables. In this paper, using one of the constructed fundamental solutions, the Dirichlet problem is solved in the domain $\Omega\subset R^+_2$. Using the method of Green's functions, solution of this problem is found in an explicit form.
Ключевые слова и фразы:
singular partial differential equation, generalized bi-axially symmetric Helmholtz equation, fundamental solutions, Green's function, Dirichlet problem, Kummer's confluent hypergeometric function in three variables.
Поступила в редакцию: 28.09.2012
Образец цитирования:
M. S. Salakhitdinov, A. Hasanov, “The Dirichlet problem for the generalized bi-axially symmetric Helmholtz equation”, Eurasian Math. J., 3:4 (2012), 99–110
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj107 https://www.mathnet.ru/rus/emj/v3/i4/p99
|
Статистика просмотров: |
Страница аннотации: | 281 | PDF полного текста: | 118 | Список литературы: | 45 |
|