|
Eurasian Mathematical Journal, 2012, том 3, номер 4, страницы 53–80
(Mi emj105)
|
|
|
|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Krylov subspace methods of approximate solving differential equations from the point of view of functional calculus
V. G. Kurbatova, I. V. Kurbatovab a Finance University under the Government of the Russian Federation, Lipetsk, Russia
b Air Force Academy named after professor N. E. Zhukovsky and Y. A. Gagarin, Voronezh, Russia
Аннотация:
The paper deals with projection methods of approximate solving the problem
$$
Fx'=Gx+bu(t),\qquad y=\langle x,d\rangle
$$
which consist in passage to the reduced-order problem
$$
\widehat F\hat x'=\widehat G\hat x+\hat bu(t),\qquad \hat y=\langle\hat x,\hat d\rangle,
$$
where
$$
\widehat F=\Lambda FV,\qquad\widehat G=\Lambda GV,\qquad\hat b=\Lambda b,\qquad\hat d=V^*d.
$$
It is shown that, if $V$ and $\Lambda$ are constructed on the basis of Krylov's subspaces, a projection method is equivalent to the replacement in the formula expressing the impulse response via the exponential function of the pencil $\lambda\mapsto\lambda F-G$, of the exponential function by its rational interpolation satisfying some interpolation conditions. Special attention is paid to the case when $F$ is not invertible.
Ключевые слова и фразы:
Krylov subspaces, Lanczos and Arnoldi methods, differential-algebraic equation, reduced-order system, functional calculus, rational interpolation, operator pencil, pseudoresolvent.
Поступила в редакцию: 20.11.2012
Образец цитирования:
V. G. Kurbatov, I. V. Kurbatova, “Krylov subspace methods of approximate solving differential equations from the point of view of functional calculus”, Eurasian Math. J., 3:4 (2012), 53–80
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/emj105 https://www.mathnet.ru/rus/emj/v3/i4/p53
|
Статистика просмотров: |
Страница аннотации: | 914 | PDF полного текста: | 247 | Список литературы: | 146 |
|