Аннотация:
This paper is concerned with a space-time fractional partial differential equation (FPDE) which gives a generalization of a class of fourth-order partial differential equation. In the newly proposed FPDE, the spatial derivative is in Riesz-Feller fractional derivative type and the derivative of time in Caputo sense. The studied equation represents the Swift-Hohenberg (SH), the extended Fisher Kolmogorov equations (EFK) and Kuramoto Sivashinsky (KS) equations in a generalized form. We describe the application of the optimal homotopy analysis method (OHAM) to obtain an approximate solution for the suggested fractional initial value problem. An averaged-squared residual error function is defined and used to determine an optimal convergence control parameter. Two different numerical examples are considered, the EFK equation and the KS equation, to justify the efficiency and the accuracy of the adopted approximation technique. The dependence of the solution on the order of the fractional derivative in space and time and model parameters is investigated via various graphs of the obtained optimal homotopy series.
Образец цитирования:
S. Shamseldeen, A. El-Said, S. Madkour, “On the solution of nonlinear generalized Caputo-Riesz fractional EFK and KS equations”, Eurasian Journal of Mathematical and Computer Applications, 7:2 (2019), 62–78
\RBibitem{ShaEl-Mad19}
\by S.~Shamseldeen, A.~El-Said, S.~Madkour
\paper On the solution of nonlinear generalized Caputo-Riesz fractional EFK and KS equations
\jour Eurasian Journal of Mathematical and Computer Applications
\yr 2019
\vol 7
\issue 2
\pages 62--78
\mathnet{http://mi.mathnet.ru/ejmca103}
\crossref{https://doi.org/10.32523/2306-6172-2019-7-2-62-78}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470767100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067585476}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ejmca103
https://www.mathnet.ru/rus/ejmca/v7/i2/p62
Эта публикация цитируется в следующих 2 статьяx:
Dinh Cong Huong, Dao Thi Hai Yen, “State estimate intervals for a class of fractional-order interconnected systems”, DCDS-S, 2024
Samir Shamseldeen, Ahmed Elsaid, Seham Madkour, Advances in Computer and Electrical Engineering, Advanced Applications of Fractional Differential Operators to Science and Technology, 2020, 224