|
О сложности реализации одного класса почти симметрических функций формулами глубины 3
С. Е. Черухина
Аннотация:
В работе рассматривается класс почти симметрических булевых функций. Для любой функции из этого класса значения на любом слое, кроме второго, совпадают со значениями монотонной симметрической функции с порогом 3. Значения на втором слое произвольны. Изучается реализация функций из этого класса $\&\vee\&$-формулами в базисе $\{\&,\vee\}$.
Получены точная оценка минимальной сложности функций данного класса (функция минимальной сложности указана явно) и асимптотически точная оценка сложности монотонной симметрической функции с порогом 3, максимальной по порядку сложности в исследуемом классе.
Статья поступила: 19.12.2005
Образец цитирования:
С. Е. Черухина, “О сложности реализации одного класса почти симметрических функций формулами глубины 3”, Дискрет. матем., 20:1 (2008), 120–130; Discrete Math. Appl., 18:2 (2008), 131–142
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/dm995https://doi.org/10.4213/dm995 https://www.mathnet.ru/rus/dm/v20/i1/p120
|
Статистика просмотров: |
Страница аннотации: | 379 | PDF полного текста: | 177 | Список литературы: | 39 | Первая страница: | 2 |
|