Дискретная математика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Дискрет. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Дискретная математика, 1991, том 3, выпуск 1, страницы 68–73 (Mi dm776)  

Неполные гауссовы суммы в конечных полях

Г. И. Перельмутер
Аннотация: Пусть $k$ – поле степени $n>1$ над полем $F=F_p$ классов вычетов по простому модулю $p$, $\chi$ – неглавный мультипликативный характер в $k$, $\chi(0)=0$, $e$ – канонический аддитивный характер поля $k$. В статье вычисляются средние значения квадратов модулей неполных гауссовых сумм
$$ g(v,\chi)=\sum_{x\in V}\chi(x)e(x), $$
где $V$ – аддитивная подгруппа в $k$, и сумм вида
$$ S(V,\chi)=\sum_{x\in V}\chi(1+x), $$
возникающих, например, при изучении степенных вычетов и невычетов в кольце $F[x]$ по модулю неприводимого над $F$ многочлена степени $n$
Статья поступила: 27.12.1989
Реферативные базы данных:
УДК: 519
Образец цитирования: Г. И. Перельмутер, “Неполные гауссовы суммы в конечных полях”, Дискрет. матем., 3:1 (1991), 68–73
Цитирование в формате AMSBIB
\RBibitem{Per91}
\by Г.~И.~Перельмутер
\paper Неполные гауссовы суммы в~конечных полях
\jour Дискрет. матем.
\yr 1991
\vol 3
\issue 1
\pages 68--73
\mathnet{http://mi.mathnet.ru/dm776}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1112289}
\zmath{https://zbmath.org/?q=an:0726.11078}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/dm776
  • https://www.mathnet.ru/rus/dm/v3/i1/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Статистика просмотров:
    Страница аннотации:300
    PDF полного текста:125
    Первая страница:2
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024