|
Дискретная математика, 1992, том 4, выпуск 1, страницы 111–116
(Mi dm721)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Реализация линейной функции плоскими контактными схемами и схемами на плоской целочисленной решетке
Ю. Г. Таразевич
Аннотация:
Рассматривается задача реализации линейной функции алгебры логики плоскими
контактными схемами и контактно-проводниковыми схемами на плоской целочисленной
решетке.
Известно (см. [1]), что линейная функция реализуется с линейной сложностью в классе произвольных контактных схем и с квадратичной сложностью в классе $\pi$-схем (см. [2, 3]).
Ниже получены линейная верхняя оценка сложности линейной функции в классе плоских контактных схем и верхняя оценка вида $n^{1+\varepsilon(n)}$ для сложности той же функции в классе схем на плоской целочисленной решетке.
Статья поступила: 11.12.1990
Образец цитирования:
Ю. Г. Таразевич, “Реализация линейной функции плоскими контактными схемами и схемами на плоской целочисленной решетке”, Дискрет. матем., 4:1 (1992), 111–116
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/dm721 https://www.mathnet.ru/rus/dm/v4/i1/p111
|
Статистика просмотров: |
Страница аннотации: | 451 | PDF полного текста: | 238 | Первая страница: | 1 |
|