|
Вероятности событий, связанных с общими предками двух вершин в обобщенной модели рекурсивных деревьев
Д. А. Куропаткин
Аннотация:
Случайное дерево $T_n$ с $n$ вершинами и $n-1$ ребрами называется обобщенным рекурсивным, если либо $n=1$, либо $n>1$ и $T_n$ получается присоединением $n$-й вершины к какой-либо вершине случайного рекурсивного дерева $T_{n-1}$. При этом вероятность выбора конкретной вершины определяется некоторой последовательностью $\{\alpha_i\colon\alpha_i>0\}_{i=1}^{\infty}$. В настоящей работе исследуются вероятности некоторых событий, касающихся общих предков вершин с произвольными номерами.
Статья поступила: 25.08.1998
Образец цитирования:
Д. А. Куропаткин, “Вероятности событий, связанных с общими предками двух вершин в обобщенной модели рекурсивных деревьев”, Дискрет. матем., 11:4 (1999), 58–64; Discrete Math. Appl., 9:5 (1999), 473–480
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/dm399https://doi.org/10.4213/dm399 https://www.mathnet.ru/rus/dm/v11/i4/p58
|
Статистика просмотров: |
Страница аннотации: | 305 | PDF полного текста: | 181 | Первая страница: | 2 |
|