|
Дифференциальные уравнения, 2005, том 41, номер 6, страницы 844–850
(Mi de11304)
|
|
|
|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Уравнения с частными производными
Об одном методе исследования связанной системы дифференциальных уравнений
Ю. Т. Сильченко Воронежский государственный университет
Аннотация:
В качестве модельного примера рассматривается связанная система трех дифференциальных уравнений
с частными производными, для которой задаются краевые условия и условие в начальный момент времени. Эта система сводится к линейному дифференциальному уравнению в некотором функциональном пространстве
с необратимым оператором при производной. Для полученного уравнения с использованием обобщенной резольвенты строится разрешающая полугруппа и изучаются некоторые ее свойства. С ее помощью устанавливается теорема существования и единственности решения исходной задачи. Приведенный метод позволяет рассматривать и более общие задачи.
Библиогр. 16 назв.
Поступила в редакцию: 19.01.2004
Образец цитирования:
Ю. Т. Сильченко, “Об одном методе исследования связанной системы дифференциальных уравнений”, Дифференц. уравнения, 41:6 (2005), 844–850; Differ. Equ., 41:6 (2005), 887–894
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/de11304 https://www.mathnet.ru/rus/de/v41/i6/p844
|
|